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ABSTRACT

Solutions to th¢ Dirichiet and Neumann problems for the rcgion
cxi-rior to the intersection of tws 1egions whose individual electro-
static Green's funchions arc known are developed. The method is
applied specifically to obtzin sclutions for the exter:or of a sclid
finite errcular cone with a spherical cap. The solutions to the vector
and scalar wave cquations for long wavelengths ¢ag be expressed in
terms of these Dirichlet and Neumann solutions. This will be the

subject of a forthcoming report,
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SCOPE GF REPORT AND SUMMARY OF RESULTS
Our ultimate purmose 1s to obtain solutions to the scalar wave equation
v 294+ K29 =0

over the exterior of a compact set §2 n 3-space, subject to vanishing nor-
mal derwatives on the boundary of €2, and in the presence of a source ¢ —
1. e., essentially the Green's solution. We intend to get explicit solutions,
moreover, interms of classical functions, and indeed in terms of the
Green's functions for regions simpler than Q  In this paper we study only
the case k = 0 (potential problem), and we will subsequently use these rcsults
to obtain the so-called Rayleigh soluti0is for k #0,

This program is accomplished under the following two hmitations:

(1) The region Q 1s the intersection of two regions €;, and 2,
for each of which the exterior electrostatic Green's function 1s hnown.

(2) The region 215 moremer ziially symmetric as s the
function ¢. and these axes of symmeiry comncide.

Using the present method 1t does not appear possible to highten these
restrictions essentially (it will be scen under (1) that we could have an arbi-

trary number of regions insiead of just two). These two restrictions,
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which correspond »oughly to the two major parts of this worh, are imposed
only as they are needed to "make the method work”, since a greater generality
at the intermed:ate steps adds nothing to the complexuty of the treatment and
15 concervably of independent interest.

In Part I, 1n which we assume only the restrictions under (1), we
soive the general Dirichiet problem for a region Q which is the inter~
section of two regions €, and Q, — 1.2 € ( @ — ior which indi-
vidually the electrostatic Green's functions G, and G, are known. The
method is probabilistic 1n nature, using Browman motion theory. It 1s not
indispensable to use this theory to acheive our results, but 1t was the way
it v« as discovered and 1t has the advantage of being relatively simple, and
1n addition gives simple bounds on the iterative method it leads to.

In Part II we assume conditions (1) and {2) and using the result of
Part I we show how to soive (he Neumann problem {vanishing normal
denvative"s on the boundary of Q) with a suitable singularity (the axially
integrated Green's solution)., This gives, as a special casc, ot coarse,
the dipcle source at infumty directed 1long the axis of symmetry analogous to

the “"radiation condition” at infimty). The method employed 1s due essentially

to Bassett and 1s very old, but seems not to have becn noticed by later writers.

The present modiitcation, in particular, seems new.
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Ir Part 10 some of ‘hese results are explicidy carried through
for a specific example — 1 e a sohd fimite cone capped by a sphericat
segment, the center of the sphere coinciding with the apex of the cone
We give calcutations for the solution of the Dirichlet problem with
constant boundary values, and those boundary values which mn turn yieid
tle solution the Neumann problem correspending to a dipole source at
infimty These calculations are rather involved but can be, as appears
tc be generally the case, expressed neatly in terms of explicit matr:n
calculations The main numerical problem 1ndeed, 1s that of nverting
a certam matrix.

In Part IV we discuss several aspects of the method oi Bassett;
namely its amiqueness and its relation to the "method of generalized

electrostatics” developed recently by Weinstein and Payne
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i

PROBABILISTIC METHODS AXD Thi SIRICHLET PROBLEM

1.1 Notation and Termmelom

The po:nts of 3-space i-::z are denoted by vectors g, q, N, 3, e
which will be co-ordinatized when necessary. We consider only scalar-
valued fancticas f, g, U,V,... The voiume differential at o is denoted
by d vip).

We consider certamn regions Q, @, @;, ... m ES which, 1f

bounded, w:ll be cc t. The cumpl t of 2 15 denoted Ly Q and

P

the boundary of 2 by B(2). We denote by —a-a—— a derivative 1n the
direction of the outward drawn normal to B(Q) at the pownt p € B(Q2)

The restricticas placed on 2 here and in later developments will be clear
from the con‘ext. For p € B{Q)} ve denote by do (p) the surface area
differential.

By the electrosiatic Green's function associated with 2 we mean
the function G(\, 3), %, ¥ ¢ wh.ch as a function of 3 1s harmonic n &
except at 3 = a, which vanishes on B(R), and is such that G(x, 1) «

pm ’:_ T v -3 3. i B() 1s considered as a (possibly unbounded)

grounded conductor, G{x, 3) is tne potential nduced at \ by a umit charge

aty.
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1.2 Probability Considerations

We let \(t), 0< t <o be the three dimensicne! Wiener-Einstemn
stochastic process, 1.e. A{t) = gx, (t), 2z (1), 23 (t)j where s (t) are
three ndependent one-dimensional processes with x(0) = 0 Let a compact
Q be given and a furction f{p), p € B{R), be defined over B(Q). The
following prababilistie faet 15 the cnrmeratone of the method emploved here.

Let 5, € &, andlet T = T(x,) be the time at which x(t) + x,
first mtersects €, 1f 1t ever does. If x(t) + x, never mtersects 2,

set T = . Thus

T(x,) = sy J,—tlx(-')‘x <f, 0 %
Yo '_>% L o

From the continmty of ({t) we conclude x(T) + », € B(Q) and we

define 2 random variable 1 = Y(x,) by

Then 1t is true that U{x,) - E (\'(\:0)) , where E 1s the cxpecta-
tion, 1s the solution to the exterior Dirichlet problem. That1s, U(x}is
haraomie for » € (, assumes the value £(x) for € B(Q), and U(\)

1
vamshes ke —, for l\l - .
Int
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These facts 4re relatively well knowr — ef (1, 2], [3] — and may
be deduced from the more elementary fact that if Gﬂ(x, 3) 1s the electro-

static Green's iunction for €2, then 260 (o, p) G5 (p) 1s the (infini-

an
14
tesimal) probability that x(t) *~ x, first enters 2 via the surface element

do (p} atp. We then cbian by integration

e(y(x,)) = )] _acﬂi\j.L"_)_ do ip)
Xol) ) 2mp {p),

B(Q)

which 1s the classical solution.

1.3 7he Dirichlet Problem for Two Intersecting Regions
Let £ be ihe intersection of two regrons £; and €,; 2 = O N,
and suppose that the electrostatic Green's functions G, and G, are known
for Q; and €2,. Exploiting the probabilistic interpretation of the Dirichlet
robiem of Section 1.2, we show ko s {9 sulve the Dirichiet problem for Q.
The method will . Iso yield the electrostatic Green's function for Q(which we

need in Parts Il and 11} by the simple expedient of solving the Dirichlet

problem for those boundary values induced on B((2) by the potential

1 -
. For convenience we assume at least one of the two regions

47 | x - o
€, and €, is bounced, so that the sameistrueof Q:=, N 2, . The

method 1s applicable 1f 2 is the intersection of €2, . Q;,-.., 2, where
the ndividual Creen’s functions are knaown, but the calculational compiexity

e reases rapidhy.
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Let Bloy) =S U S and B@,)= S, U 8 uhere 5, = 3015,

S =BQ,} 1§, andsmlarly for S, , 8,'; §;, = BQ,) Nq,

S’ = BiQ) N 5, . To make the problem non-trivial we assume these four
components non-vold.

In connection with this notation we refer to Figure 1 below in whicih
Q; is an infimte cone and ©2; 1 a sphere, an example treated in detail 1n

part .

Figure 1
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Here tiic radius of the sphere 15 EN and the sem: vertex angle ot the
cone 1S 7 - €0S Ho

Let f(p) be the desired boundary value defined over B(2) = 5,1 s,
and consider a point pc S—z,; \IS-Ig. Let us denote by E, (p), pe S} the required
expectation, which is the potential sought, where the Wiener process starts
at a point pe S} and similarly E. {p), pe S} for a starting position pe §; .
For the particle starting at pe S}, it may intersect S; betore intersecting
S}, or S} before S, , or may never intersect either. If we denote by G, (p,q)
and G, (p, q) the respective electrostatic Green's functions for 2, and 9, the
sum of the expectations for these three cases is

E, (p) = F, (p) + f—’;—fﬂ’—ﬂ E; (x) d o (),
X

s'i
pes,
2

Fy (o) = ‘5 %Gﬁli"—*l f(x)dotx),
X

3!

pc S
In an exactly similar way we find the corresponding equations for a

pomnt pe 5}
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B =it o 288 5 a6

;5 an.\
pe §i
where
Fy(p) = [ ?%M f(x)do(x)
N X
% pe §

Equations (2) and (4) constitute a pair of itegral equations for E,
and E, which we propose to solve. We remark that if we have done so, urd
F, 2nd F, are defired for an arbitrary point pe {;{ 153, by (3) and (5}, then
the right hand sides of either (2) or (4) gaves the potential s~=ight, and they
must agree in this region. If, however, as in Figure 1, the region Q;1s

cunded and £, is noi then for pe /(3 only (4), and not (2), gives the
correct result. Similarly, for pe 9, {1 % . (2) only gives the correc. re-
sult. Indeed it 15 easily seen that the above >numeration of cases :s valid
for both (2) and {4) only if pe (™, 0.
Let us define

H, {p,q) = 3G, p.0) s g€ 8§
3n
q

.
Hy(p,q) = —222% gn\p,q) , acS
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s
% )= Fy (p) + ; Hi (D, 2} Fy (x) do (1)
-1

o
St pe sy

9: (P)=Fs(p)+ [ Ha (p, ) Fy (x) d o {x)

J
s pe 5

Ky (p.q) = J Hy p,2Y Hy (x, @) d o (1)

s} P, g€ S}

K;{p.q) = J Hy (p,x) H, (x,q) d ¢ (x)

) P, q€ §;

where Fy and F, are defined in (3) and (5). Then (2) and (4) yield the following

Fredholm equations for Eyand E,,

~

E; (p,) }x P+ K p,x) E; (x) d o (x),

\
'
R ne
= r‘-sz

B30+ L KRe,NE, Mde

¢
J
§

pes

These are two ordinm y Fredholm equations which dete mincd E;

and E; umgquely and, as mentioned above, they completely determine the

solution.
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i.4 The Iterative Sotutions for E,

and E,

In these integral equations the classical iteration procedure can be
carried out profitably (in contrast to the double-layer mtegral equation for
which the iteration procedure diverges).

(n), th

Considering E; for example, we let X; {p, q) be the n  iterate

of the kernel K;

(1)
XK (o 9 =K (p, q

(n+1)
K, " )(p, q = ( Kx(n) {p, X)K; (%, g)do (x)

J
B
Then e have the classical N exp
&7
b
E(p) = Fi(p) + ’> .0 Kl(n) {p, x) Fy(x)do (x)
n=1 J
S,

and this series converges exponenuaiiy tast.
To verify this last remark, we notice that Kl"n) (p, q9) do (q) :s

the probability that ibe Brownian motion particle has made n double
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transfers between S, and S;', termunsting at an area element do (q)
on S;' without ever having entered §; 1 S, = B(Q). U ,, say, 1s
bounded 1t 1s clear, at least intwitively, that the event of n such double
transfers, for large n, has a probability O(a®) for some 0 < a < 1,

Jore precisely, put

r
a = sup K(x, q) dc (g)
X €8y
5,

then a < 1 and it follows easily

r

J: Kz(n)(x, Vdoly) € a", n=1,2 ...

s,

and also if we put

we shail have

B
E (p) = Filx) + .> T Kl(J) (0, @ F;{3)u (q) +3J

3=
5.
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@ 1
e > vl -

}=n+1l

giving 2 s mple bound on the erior made by truncating the series at n
terms.

It 15 easily seen that if we know G, (p, q) for a region Q, which
"differs” but hittle from 2, then a is very small, and as a matter of fact,
pursuiny this remark it is possible to get an cxz2ct perturbation formela for
a region of the form Q= Q, U '1‘< where T, is a region whose capacit)
goes to zero with €,

In the practical calculations we have encountered thus far ail the
iterates can be explicitly calculated in terms of matrix calculations, and
the resolvent kernel for these wntegral equations is expressible as the

inverse of an explicit matrix, cf Part III.
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o

SCLUTION OF THE NEUMANN PROBLEM IN TERMS
OF THE DIRICHLET PROBLEM

2 1 Assumptions and Notations

From this point on we assume, as stated in the introduction, that
2 =0,N Q15 avially symmetric, or 1s 2 body of rotation  The sets Q,
and €, need not be, however. We also adopt, from this point on, the
spherical co-c. dinate system (p, §, 6) to describe the vectors p.q, ... .
In Jiis aotation p is the distaace from the origia p = [p|, @ 1s the co-
latitude 8 £ @< 7 and 0 1s the longitude 0 £ < 27 . We adopt the
transformation x = cos §, so that 1 >u » -1, and consider, when convement,
the system (p,u, 6).

We choose the ax1s of symmeiry of Q to be the polar axis § =8. Given

a region Q we say that a function U (x), X ¢ ©, 15 a solution of the Neumann

problem 1f U (x) is harmone, x € Q, and a/an‘ U({x)=0, xe B(R). In

Tder to avord yielding the trivial result U = const. the condition of harmon-

11ty 1n © must be relaxed and {J must po certain singularit:c< either

in the fimite part of F3 or ‘atainfimty”. The precise nature of these 1s

discussed later
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2.2 Harmomc Functions and Stream Functions

2 2
We denote ny v'l' and E” the operstors

2
a 2 ot ) 2, dt i dv
=— —)+—'((1-u)——)+—
Jp 3p du ou 1_“2 ae2

2 2

2 2 2 9
R ki Sk 3
dp“ a7

ay

We apply 1-12 saly to axially symmetric functions, so the term in 6 does not

appear. We say that a pair of functions, aaally symmetric, are conjugate,

if they satisfy the Beltrami-Stokes equations. That is, § and h are conjugate

if and only .f

2, 2 9
d-ph 2L . 2n

du [

ERTR1Y
dp u

It follows easily that 1f § and h are conjugate, § must satisfy

Vf $=0and b must satisfy Ezh =0. Moreover, if § and h are conjugate

they are orthogona’ - N/ @ - Vh =0. The pair of equations (16y and (17)
correspond to the vrdinary Cauchy-Riemann equations, and given any ¢

satisfying Vf ¢ =0 there corresponds, oy means of them, a function g

2
satisfying Ezg =0, and conversely; given g satisfying E"g = 0 there ex.ats
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a & sats:iving '\7? $=0. The correspondcnce is unique up to an addiuve
constant which may be determined by prescribing the value at one point, or
at infimty We give the exact reciprocity relatioas later

The goal, which we described in the introdiction, of solving only
Dirichlet boundary value problems could be achieved if, given Q, we could
solve the problem Egh =0, p . hio} = const, g € B(Q2), for then the func-
tion § conjugate to h would be harmome with the Newmmann boundary conditions

It turns out to be possible to de this by solving an accessory Dirichlet problem

2.5 1be Metnod of Bassett
Bascett noticed that the following relation 1s true, for anv function

u = ufp, p) with requsite derivatives,
cosf I-:‘Z (p \ll-ud u (p, “9 = p Vi-u Vl(cose u(p, #9 .

2
This correspondence between ]52 and 7, which is easily proved by
1

substituting in (14) and (15), 1s the hink by which we connect the Dirichlet

and N probl B tt's results are credited to him by
Hobson m (4). A related procedure, due to Wemstemn and Paynic, i3
sketched bri=fly in Part V.

2
From (18) it is clear that if we want to solve the problem E”g =0 with

boundary values b(p), p € B{Q) we can do so by soiving Vf‘, =0 with

cosé
V-2

boundary values ¢(p) = blp), and in fact the function g w1 then be given by
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If we now find a function @ conjugate to g, § will be harmonic and 1ts
equipotential surfaces will be orthogonal to the level surfaces of g

In particular, suppose v(x) 1s harmonmic 1n Q, except for prescribed
singularities. In order to solve the Neumann problem we consider the
function ¥ conwgate to v and choose b(p) =V(p), p € B(Q). Then the
function V - g, with g as above has zero boundary values and 1ts conjugate
function v -+ 15 harmonic and has vamshing normal derivates or B(Q),
and thus farmishes the solution with the prescribed singularities This
procedure 1s in fact the way the further development proceeds.

We remark that the restriction to axially symmetric bodies and
boundary conditions :s :ndispensable for the use of (18), and wattun this

framevork cannot be exiended

2 4 Solution of Reciprocity Equations

We consider the eqaations (16) and (17), showing how to express § in
terins of h and vice versa.

Suppose @ iu an axially symmetric harmome function defined on a.
Then there exist measures v, and v, over the non-negative reals such that

for sufficientiy small p
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. _ A
Bie.ud = jopddr; 00 120)
and for' p sufficiently large
S N S @)
Blo,u) = ) R P dv, (U .

These a.¢ the "normal solutions” and generally v; and v, will be discrete
so that the above integrals will be sums - that is, v,, for example, will
assign a weight a at the value )Ln 20,n=9,1,. . .

When §§ is expressed in this fashion its conjugate E =h has a particularly
simple form  We obtain, namely, hy solving (16) and (17), that for p 1n the

range where (20) 1s vahd

3|
0

A
shipw = -pVl-u® S 25 A wa,m @2)

and for p 1n the range of (21)

Fonwzpita® \ —— P wam . @3)
)w“l A
A

These formulas determine h except for an additive coastant. We omit
the derivation which is straig htforward.

Conversely, any axially symmetric stream function h car. be written in
the form of {22) o1 {23) wii smtable v, and v,, and the harmonic function

which 15 conjugate to 1t 1s given by (20), (C1) with these same 1, L,

18
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2.5 Solution of the Neumann Problem
Let G{g. ) be an anrally symmetrie function harmonic Q except
for prescribed singulanities. Using the p.eceding resilts we are now 1n
a position to solve the Neumann problem for Q, thatis finding a function
U{p, p) harmomc n Q with vamshirg normal derivatives on 2 and with
the samc s.ngularities as G.
We write

Ui = Glp) - Vip) (24)

so that V(p) 1s harmonic everywhere in @, and we require it to vanish ter
p -—» o, thus requiring U ana G have the same limiting, hehavior.
Write G as

G = \p)‘Px(u)dv(M N p<c o, (25)
L%

on suppos.ng the singularitics of G arc exterior to the sphere p = By

The function conjugate to G 1s then, by the preceding section,
pl
G=-p Vi-u Sr P;l)(n) dv (N

and we write for a point p € B(Q)

x
bip) = - S £ pi” (1) dv (N cosé . (26)
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Let Vy{p) cos8 be the solution to the Dirichiet problem for Q with
boundary values b(p) - 1t 1s symple to prove that the solution 1s of the form
Vilp uicosd. Then p Vieu? V.(p, 4} is a stream function and V; can thus

be writien in the form of (22) or (23)

o = § o ¥ e,
i3

Yo w = \ == P az,m
i\ps B pM] A K 2

We now set v as the function conjugate to p \/l-uz V;. so that we

have from e reciprocity formulas of Sceticn 2.4

vo=- S(u Do Py AT, )

_ A
v = S g P AT, (N

for small and large p respectively. The requirement that V—0, p—s o
then shows the additive undetermined constant must be, in fact, zero.
Since G - p ] V, 15 2 stream function vamsking on B(S2) its
con,ugate has ncrmal deriwvatives zero on B(Q2), as required.
To vecapnulate, the normal solution to the Neumann problem, giver

Qand G, 15

U= 6- ;V}—nlv,
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(the bar representing a conjugate) where V; cosé is Lhe solution 1o the
Dirichiet problem for 2 with boundary values b given by (26), v being
determined by (25). The function V= p Vi-u2 V; 15 given by {28) where

T, and T, are determ:ned by (27)

2 { 'The Green's Solution

We now specialize the scluuon of the preceding section to the case
where Lie singularity 1s that generated by "charged ring". This will give
the Green's solution, or {undamental solution.

Thus 1n equation (24) we take for the furction G

2r

iz

. 46
G(po Mo p.u) = 5

PP,

and this can be exjanded

®
n
= E £ .
G(po,uo,p.u) pmi Pnl_z.o) Pn(u). pep,

o

@®
n
).
g el al! B o>

and th:s 1s the Green's function for the operator V? defined by (14) with

respect to the dufferential dpdp. Thatis
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1

nu)
. 1 _ -
Vi 30 3, Glo.u e §(o,u)dudp = Sloy w )

for continuous functions §

Bj (22) and (27} tne function conjugate to this G 18

Qa
e n
Glo_ i sp) = -p Vi-u E —— My p )
o e T e noe

]

<
4 Po

[+1] n

G spa = p 1 -4 i % P p )
Po HD.PrH 4 u : npml n nto’

2 >|7° -
The term n =0 does not appear since Pf,l )(M) =0.
By {26) we consider. for (p,u) € B(%) and for p < o, when

{0.11) € B(Q), the boundary value
®

. —et ),
b{p,u.6) = - prey Pn @) Pn(uo) cos@
(n+l)p°

and we let Vy{p,u)cost he the solution to tne erdinary Dirichlet problem
with these boundary values on B(2). The function Vy{p, ) can then be

evpressed by (27), 1n the normal form
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s 1]
all
Vilp., ») = > .
1 pxn+

0
for small and large p respectively, the constants a, depending or Pn By -
For the function conjugate to V; we have by (28)
@™

A
Vip, ) = } a, ) p " B (W
0 n

@®

A
. - n
Vip,u) = E a, W, P, (1)
p n

0

and consequently the required solution to the Neumann problem 1s

Ule¥ ipm) = Gle . i .p )= Vip, u)

where G 1s given by (32) and V by (36)

To recapitulate, given §2 we solve the Di ichiet problem wiin
boundary values blp, 1, 6) given by (34} The solution ca 1 be evpressed
as V,cosf vhich determunes the constants a =an(po uo} in {33). These

determine Vip.u) via (36), and then UJ is given by (37}
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AN APPLICATION TO A SOLID FINITE CONE.

3.1 The Problem Considered

Usmmg spherical coordinates let 2 be the intersection of

The relevant regions and surfaces are as » Fig. 1.

iu this part we are going to carry thiough some of the ealculations

for Q that we developed in pa:ts I and 1l. The calculations, though el ry,
become somewhat involved, but fortunately the use of matrix notation permits
a significant compiaession.

We solve here the Neumann probiem for €, corresponding to 2
simgularity at infimity of the form pu, p—> 00. This 1< done in reasonable

detail and the answer, given by (45), is expressed 1n terms of the quite sim-

ple m:xtrix-/\- given by (43).

For the Dirichlet problem for the exterior of €2, that is the solution
w1th boundary values one on B(f),is similar, except that it is not necessary

to find the conjugate functions, and is given by (46),

3.2 The Ncamann Problem
As mentioned 1n the preceding section we do not use the singularity

generated by (30), but only its hmiting form when pg—> 00 and pg = 1.
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-5 -
This will be the analogue of the ' radiaticn condition' and is that induced
by un indefimtely large charge on the remote axis of symmetry - 1. e.
The potentiz: pehaves 222 pu. p—y00 As can be seen by considering

Iim pz (G - —pl— )

ps 00 [)
1 equation (30}

By considering (32) thus induces the boundary values

1 1
tm ol blou®=- 5 o P () coso
5300

1 2
=5 p 1-p cos®

when we set M- 11r (34) and take the limit. Thus in (26) we have just one
term and the boundary value for the associated Dirichlet problem is
—_——

1 o
b (p,u,8) = —; o\ 1-u" cos®.

3.3 Solution ot the Associated Dirichlet Problem

(m)

Leta {m) be the positive zeros of P, (uo) considered as a function

oy, J=1,2,..., m-0,1,.._ andput
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Then the Greens funcuon for Q) 1s

(m) (m)
de {m) ‘up‘ PaJ (m) “‘q)

Gy (p,y) =
o (m) ﬂj (m)

(39)

-6)
cos m (Op Gq,

ifp >p ,if we 1nterchange p and q in (39).
i pq_pp qu pp ge p q

For €, , the sphere, we have

o0 w 2n+1 n

-l T P
1 — [] p
Glod 4 > S M- 2
N 4 2n+1 2n+1
T AN P, p

D

(m) (m)
P P Jeosm{(8 -6).
n (up) n (uq [t o
for pp < pq . We make a similar interchange

For B (Q,) and B (2,) we have

do; (p)=p \/1-;;02 do d8

2
o

1
== \l-u
Bnp F)

doy(p) =
o) = r,

PeB(¢))

a
%
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In caiculating Hy, H,. 91.%, K, K of (6), (7), (8), (9), (10)
and (11) we need only retain the terms corresponding to m = 1 in (39) and
(12) becaus? of the boundary condition {38), cf. also the remark following
(20).

Vie let a, n), Bj be respectively a)(l), o)(l), BJ( 1), and in the
sequel we replace the cosines by complex exponentials, it being understood
that in the ensyung calculations we are to take real parts and subsequent to

any 9 :ntegrations we are to supply a factor x, since an easy calculation

shows

2z
9 -10 16 -6
‘ Re'e P ")Re/e b q\d-)\
J N v

0 L ie -6

ﬁKe(e L4 q>
AY

Th:s notational device enables us to write H; and hy, as well as
the other relevant functions, as rather compact bilinear forms,
Thus retaiming only the terras ma = 1 1n (39), (40) and defining the

folicwing colimn vectors, with p ={p,u, 6),

a (1) 9
Uy (p) =<9’Pa w e )
]
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gl
V, (p) = <_‘?

we have for Hy, defined by (6)
H ,)-U'(p)\';(), <
1(pg 1 Q! P) P
=U; Volg), o >p
3 (p) V2 (q p q

qe B,
where the accent denotes the transpose and where, without specifically
mdicating 1t real parts are to be taken.

Sinularly defining

/
2yrl
Z (p} =K—J4;—

we obtain from (40) and (7)

Ha{p,q) = Y' (p) Z {q)

g€ Buk)

The follow two vectors A, B znd three matrices M, N;, Na, whose
components are constants, are needed. In the designation of a matrix as

cjk , the index ) refers to the row index and k the column index. In denoting




THE UNIVERSITY

OF MICHIGAN
2871-3-T

th
by a a column vector, dI vefers tothe 3 component of it.
J L

A

!

V, (%) b{x}do ()

‘Vl-uz r‘al+2
_ o 0

(41)

2[3] (a.J +2)

B- {2t6bi

4

dos (v)

2 T2
(1=p” ) (2y+ 1) A
2 v o (1) \’ 2 (1
BTGP D W2 T W) T Vg P “‘o’}»l >1
Ho
r3
o . _ .3 o R
3 (3uo By 2}, 171
M= V, (x) Y' (x) day (x)
& (1)
1 v
P}
Bla+k+1)r HTEH?
;3 o
)=12, ...
k=0,1,....

s = J 2(x) U] (x) do, (x}

s
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a +1+ 1
k- (1)
:(l_;f) 2)+1 r0 P_I ‘“o)ak
- - 1
o 4 (ak J)\ak+J+1)
1=0,1,.....
k=1,2, ....
Na - J Z (\) Uy (x)dop (x)
+ (i)
5]
_21 2, 2j+1 P,
=( AN 2

(ak—,-)(ak+;+1)ro“k"

i=0,1,.....
k=14,2,....
In ti-ese integrations the function b (p) 1s given by (38} and_a factor
% has been supplied in heu of the # integrations, as explained above.
In terms of these expressions it 1s stmple to calculate the quant:ties
in (3) and (5), and (8) thru (11). They are, namely, the real parts of the

left hand sides of the followinz

F,{p) =03 Pl A, peﬁlf)?h

= 1 .
F,(p)=Y'(p) B, pp 2)0
9i(p)—U‘3(p)A+Ui(p)."‘lB, pe sy

j; () =Y (p) (B + N, A),
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Ki(p,@) = U1 (0 M 2{(q), p,qe &}

K (p,@) =Y {p) N; Vi (@), p, qe 8}

THE UNIVERSITY OF MICHIGAN

In terms of these expressions we can easily solve (12) and (13},

From (13) we obtain for E, , namely,
Ex(p) =Y' {p) B + Y' (ps NpA
+Y' (p) Ny S Vi(x) E;(x) d gy (%),

pesi

Denote by X the vector

X - J[vl (R} Ep (x) d oy (x),
Si

(42)

then multiply (42) by V, (p} and integrate over S}, obtaimng

A =MBIEMN A4 M X X

giving
-1
X=U-MN;) (MB+MNA)
Substituting this 1n (42) we sbtain

~

Ex @)=V (| B+XA+N0-MN) "' M(B+N, )
[
| ]
=Y'(p)Ll+Nl(X—MN1) Z\IJ'(B+!\'2A)

Y o u-x, 7 (B-x,4)

31

1
]
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Denoting th> vector -/\ Ly

_/\k=(,\3)=(l-i\1M)_l (B+N,4) (43)

we have thne

cos @,

' P(Jl) (u)
E, (p) = E )\J S+1

which, though imitially defined only for u H, {p € 8} ) 1s now seen to be
valid everywhere 1n p aro {p € {,) by continuatic: this being a consequence
of the remark followang (5). This remark 1s also verified after we calculate
E.

To calculate E;, we obtain from (i2)
E;{(p)=Us (p} A+ U} (p) MB
THIM ) Z(IE (x1deta)
S
‘This :s solved exactly as for L,, and we obtain
E@-Ui@A-Ci(p)MB

fUi’(p)m(l—.\'lzu)'x (N A+ N MB),

PCSh.

D

On using {4) we obtain for the patential Wip), pe 5_ 5, the expression
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W(p) =Y P B Y (p) :’,\'zﬂ‘i'}\’; MB
L

-1

-
Ny M{I-X; M) (.\‘3A+N1MB‘J'

= 3" (p) [m -3t (N, A+ N; MB )]

=Y' (p) (l—x,nxp'l(N2A+B)

1 agreement with (43}

A s:mlar argument with (2) yields

-~

W) -F P+ | 1 (p,x) E; (x) do (x)
s

= U3 (p) -\*{Ui (p} J‘ Ve (x) Y Ix) do (n)

<
e, <P,

+ Ui {p) | Vi (x) Y (x)doia) }[l—\‘ MJ {(B+ N, A).
P >Pp

- th
For we s component of the vector 1n brackets we have

(I)MB_' £

¥y
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in wlach we have set p = ( 5,u, 0).
In the first term the summation on 1 can be performed and the

result 1s simply p(i)( u) /P(l) w)” This foilows directly .n exvanding
k [

1)
P:\ (u) as a Fourier series in the compleie orthogonal set{l’a (u)}over
1

the interval i 2 p )uo , the sum of the serics equaling this function except
perhaps at the end points of th:s interval.

Thus, defining the matrix Q by
(1) a -k
o Pk uo) ro )
_(a. -k
3] (aJ )

we obtain for p e

WEIzUSA+Y' (p) J1-NM _1(B+1\’2A)

—uwali- NM BN AL
18 -
These two expressions for W, namely this latier and (43) must agrec
over their common domain of definition, i.e Q. ﬂ .

The potenual sought is then

1

l}”‘w
‘p) = E: J "
Wip) )LJ p"+l cos'),p>.o.

where '.!-e)ﬁ are the components of./\. given by (43).
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The strean furct:on for the body §. of Fig. 1 1s then, by (23},

-, 2 P

— )
4 \ P-u 2 2 ) o 1+1
0
and the solution to the Neumann problem for §2 is by (24) and {28)

< (o) < R - (45)
X@puym, o
1 P
N th
To recapituiate, let An be the n component of the vector/ \ »
aiven by {43) , and A by (41). Then the solution to the Neumann problem for
‘2, which behaves as pu for p—y , 1s given by (45).

we remarl. that in the matrix Q, if “g 18 such that a - k for some

wtegers ; and Kk, that el tmQb indetermi and is to be
replaced by its limiting value when k— nj , remrding k as a conlinuous
variable. This limuting value is readily seen to be umty.

Also, as explained 1n section 1.4, the .nverse in (13} can te

approximated by
. -1 . LS
(1 -N; M\ = e N MP g
-—1

where the bound for Jn is known, as in section i.4.
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2 1 Solut.on of the Conductor Potential Problem

We solve here the Dirichlet probiem for ©, 1n which the function
L {p? = | instead of {38), and seek the sclutions which vanish as p-l for
p—) w. The calculations are formally nearly 1¢2niical to those in the
preceding section, except that because of the simple consiant bip)
the N ntegranions can he avorded
Defime
a = ;m positive zeroof P (u )
J X O
g Paj W)

N

5 - aP‘uo)
j [N

and the following vectors A, B, and matrices M, X,, N,

rod.] T 1
A=

B. (@ +1)
1)

2 "
W - 0B )
1+

,1>0

1

—2 I'O(uoi"l),

Pk (“o)

M- m
3(n+k+l)r'1J? +1
1 1 o
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ag~)+1
N -(l-pd) 2! i) Plg) o
N 1.‘0) 3

(ak-g! (ak+;+-.\

P, (uo) o

- a -
(ak 1) (ak+3+ I)ro
These correspond to the previous designated quantities with the
same letters, and we nave for the solution of the Dirichlet probiem

2! P (u)
D(p)=> A B (46)

n on+l
3

where )x_‘ is the nth component of / \.given by

A By,

as beiovre.
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THE METHOD OF BASSETY

4 1 Prehminary Remarks

The success of the present mcthod rests very intimately on Bassett's
wdentaty (18) . This identity enabled us to revert the solution of the Neumann
problem to that of a Dirichlet problem There 1s thas a certain interest 1n
attempting to extend and simphfy 1t, 1f possible

In this part of the report we give a sketch of the method of Weinstein and
Payne which is related to Bassett's method, and show thai Bassett's idenity

15 essentially the only one of its kund

4 2 The Umgqueness of Bassett's Method

The crux of the method of Bassett consists 1n finding a umversal houndary
function, given in (26), such that the solution io e Dirichiet problem corres-
pondiag to it could be, under a suitable transformation, changed to the Neumann

=3

solution by 1ng the jugate function to the transformed function For

the method to he mmivereally applicable tc every 2 the boundary function and
transformation employed must be independent of Q

From this last remark 1t 1s simple to deduce thai the boundary function

must be a harmonic function We only have to jer a of b dares

Q, converging to Q and employ Harnack's theorem  Also the transformation
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must be Linear 1 the sense that if D 1s the solution to tae Dirichici piwuiem
the transfo.,in of D mast be ap + b where a and b are certamn point
functions

If welet aD+b - F we obtain D= oF + 3 for some functions « and g,
and .f we want F = const for a point on B() for every , thcna =B is the
umversal bounding function scught and S = const. and we may as well assume
B8 =0 We now consider only axiaily symmetric - 1f umqueness can be
esiablished for this subset of all © 1t will follow over the larger class

The condition required now is that VZBF =0 1mpl:2s EZF =0 and
conversely From the fact that the classes of harmonic £inctious and stream
functire torm linear manifolds we have then 7 2B.'-‘ = C£2F for every F, and
we seek functions B and C such that th:z s an identity n F.

The calculation becomes simpier in cylindrical co-ordinates, and (14)

(i5) become with co-ordinates (z, r, 8)

.3 2 ~ s
vzzdr +_a_z_+i_"'_+_12__dT
2 et T T a6
2.8, 812
Bzz ax_2 r or
so that
B 2
< 2 2 3 1 )
E = v e S e - ——
r or rz 362

o
1i we are then to have the idenuty, <7 “BF = CEzl‘, we obtain for F axially

symmetric
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VBF s FUPRe 21U wBs 32F

2 2
CEZF = eV - 2C JF
r 2

If these expressions are to be 19entical 1n F they

s =0

B =C

which veriiies the previous remark that the bound:ng functron 1s harmonic
The cquation 1n F then becomes

2B OF
r odr

2<JF <7B - -

which shows B canrot depend on z  Since 1n that case \/F B =:—f -

we obtain that B must satisfy

9B _ _ B

ar r

and B - % where C 1s some function of Finally if B 1s to b~ harmunic
we must have C'(6) + C'(9) =0 and C =A cusd~ A sing
Thus we obtain B =% (A cos9+ A’ sinf) or expressed 1n spherical

co-ordinates

B - A cos8 + A’ sing

p V1-u?

tor some constants A, A" The choice used 1n (19) was A =1, & =0
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4_+ _Tne Method ot Weinstein~Payne

Using what th2y term the "method of generalized electrostatics”,
Wemnstein and Pavne[7] have developed a procedure similar to the above to
solve the stream function equation 1n terms of the sclution of a Dirichlet
problem Though their method 1s not relesant to the developinent presented
here 1t scems worthwhile to point out the simlacity

The:r methed depends on the fact there exisis an identity similar to

Bassett's .n the case when the damensionahty ot the problem is stepped up by

2
tuo  Using the cylindrical co-ordinates again we let Vi and E; be the

Laplacian and stream opexators in n dimensions with axial symmetry Thus

for n> 2

EZ o

and the reciprocity relations (16), {17) are

i B . B __1_ &%

9z n-2 dr M n-2 dJz
r r
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Choosing n =& 1t :s thus seen that by sclving the conductor potential
problem (the electrastatic problem) in 5 dircensions we can find the stream
fanct.on 1n 3 dimensions and thus the Neumann problem in 3 dimensions This
method has the advantage that the Dirichlet problem considercd is cne with
constant boundary vaiues, but it has the serious disaavantage of requir.ng
5 dimensional potentials  In our work 1t has seemed preferable to use only

3 dimensional potentials with non-constant boundary values
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